Publications

=

Visit PubMed or Google Scholar for the full list of White Lab publications.

 

Recent research articles

Stopfer LE, Gajadhar AS, Patel B, Gallien S, Frederick DT, Boland GM, Sullivan RJ, White FM. Abolsute quantification of tumor antigens using embedded MHC-I isotopologue calibrants. Proc Natl Acad Sci USA. 2021;118(37):e2111173118.

Lopez BGC*, Kohale IN*, Du Z*, Korsunsky I, Abdelmoula WM, Dai Y, Stopka SA, Gaglia G, Randall EC, Regan MS, Basu SS, Clark AR, Marin BM, Mladek AC, Burgenske DM, Agar JN, Supko JG, Grossman SA, Nabors LB, Raychaudhuri S, Ligon KL, Wen PY, Alexander B, Lee EQ, Santagata S**, Sarkaria J**, White FM**, Agar NYR**. Multimodal platform for assessing drug distribution and response in clinical trials. Neuro Oncol. 2021;noab197 (in press).

Stopfer LE, Conage-Pough JE, White FM. Quantitative consequences of protein carriers in immunopeptidomics and tyrosine phosphorylation MS2 analyses. Mol Cell Proteomics. 2021;20:100104 (in press).

Kohale IN, Burgenske DM, Mladek AC, Bakken KK, Kuang J, Boughey JC, Wang L, Carter JM, Haura EB, Goetz MP, Sarkaria JN, White FM. Quantitative analysis of tyrosine phosphorylation from FFPE tissues reveals patient specific signaling networks. Cancer Res. 2021;81(14):3930-41.

Morshed N, Lee MJ, Rodriguez FH, Lauffenburger DA, Mastroeni D, White FM. Quantitative phosphoproteomics uncovers dysregulated kinase networks in Alzheimer's disease. Nat Aging. 2021;1(6):550-65.

Stopfer LE, Flower CT, Gajadhar AS, Patel B, Gallien S, Lopez-Ferrer D, White FM. High-density, targeted monitoring of tyrosine phosphorylation reveals activated signaling networks in human tumorsCancer Res. 2021;81(9):2495-509.

Morshed N, Ralvenius WT, Nott A, Watson LA, Rodriguez FH, Akay LA, Joughin BA, Pao PC, Penney J, LaRocque L, Mastroeni D, Tsai LH, White FM. Phosphoproteomics identifies microglial Siglec-F inflammatory response during neurodegeneration. Mol Syst Biol. 2020;16(12):9819.

Stopfer LE, Mesfin JM, Joughin BA, Lauffenburger DA, White FM. Multiplexed relative and absolute quantitative immunopeptidomics reveals MHC I repertoire alterations induced by CDK4/6 inhibition. Nat Commun. 2020;11(1):2760.

Dittmann A, Kennedy NJ, Soltero NL, Morshed N, Mana MD, Yilmaz OH, Davis RJ, White FM. High-fat diet in a mouse insulin-resistant model induces widespread rewiring of the phosphotyrosine signaling network. Mol Syst Biol. 2019;15(8):e8849.

Rothenberg DA, Taliaferro JM, Huber SM, Begley TJ, Dedon PC, White FM. A proteomics approach to profiling the temporal translational response to stress and growth. iScience. 2018;9:367-81.

 

Review articles, book chapters, & perspectives

Stopfer LE, D'Souza AD, White FM. 1,2,3 MHC: a review of mass spectrometry-based immunopeptidomics methods for relative and absolute quantification of pMHCs. Immunooncol Technol. 2021;100042 (in press).

Gerritsen JS, White FM. Phosphoproteomics: a valuable tool for uncovering molecular signaling in cancer cells. Expert Rev Proteomics. 2021;18(8):661-74.

Leddy OK, White FM, Bryson BD. Leveraging immunopeptidomics to study and combat infectious disease. mSystems. 2021;6(4):e0031021.

Johnson H, White FM. Quantitative analysis of tyrosine kinase signaling across differentially embedded human glioblastoma tumors. Methods Mol Biol. 2018;1711:149-64.

Reddy RJ, Curran TG, Zhang Y, White FM. Measurement of phosphorylated peptides with absolute quantification. Methods Mol Biol. 2016;1410:281-92.

Haley J, White FM. Adaptive protein and phosphoprotein networks which promote therapeutic sensitivity or acquired resistance. Biochem Soc Trans. 2014;42(4):758-64.

Gajadhar AS, White FM. System level dynamics of post-translational modifications. Curr Opin Biotechnol. 2014;28:83-7.

Johnson H, White FM. Toward quantitative phosphotyrosine profiling in vivo. Semin Cell Dev Biol. 2012;23(8):854-62.

Carlson SM, White FM. Labeling and identification of direct kinase substrates. Sci Signal. 2012;5(227):pl3.

Carlson SM, White FM. Expanding applications of chemical genetics in signal transduction. Cell Cycle. 2012;11(10):1903-9.

 

Most cited

Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA, White FM. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics. 2005;4(9):1240-50.

Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc Natl Acad Sci USA. 2007;104(14):5860-5.

Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavanee WK, Furnari FB, White FM. Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci USA. 2007;104(31):12867-72.

Huang PH, Xu AM, White FM. Oncogenic EGFR signaling networks in glioma. Sci Signal. 2009;2(87):re6.

Wolf-Yadlin A, Kumar N, Zhang Y, Hautaniemi S, Zaman M, Kim HD, Grantcharova Y, Lauffenburger DA, White FM. Effects of HER2 overexpression on cell signaling networks governing proliferation and migration. Mol Syst Biol. 2006;2:54.

Moser K, White FM. Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS. J Proteome Res. 2006;5(1):98-104.

Schmelzle K, Kane S, Gridley S, Lienhard GE, White FM. Temporal dynamics of tyrosine phosphorylation in insulin signalingDiabetes. 2006;55(8):2171-9.

Nita-Lazar A, Saito-Benz H, White FM. Quantitative phosphoproteomics by mass spectrometry: past, present, and future. Proteomics. 2008;8(21):4433-43.

Schmelzle K, White FM. Phosphoproteomic approaches to elucidate cellular signaling networks. Curr Opin Biotechnol. 2006;17(4):406-14.

Carlson SM, Chouinard CR, Labadorf A, Lam CJ, Schmelzle K, Fraenkel E, White FM. Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3. Sci Signal. 2011;4(196):rs11.